Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Adv Sci (Weinh) ; : e2307953, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582517

RESUMO

FOXG1 syndrome is a developmental encephalopathy caused by FOXG1 (Forkhead box G1) mutations, resulting in high phenotypic variability. However, the upstream transcriptional regulation of Foxg1 expression remains unclear. This report demonstrates that both deficiency and overexpression of Men1 (protein: menin, a pathogenic gene of MEN1 syndrome known as multiple endocrine neoplasia type 1) lead to autism-like behaviors, such as social defects, increased repetitive behaviors, and cognitive impairments. Multifaceted transcriptome analyses revealed that Foxg1 signaling is predominantly altered in Men1 deficiency mice, through its regulation of the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (Atrx) factor. Atrx recruits menin to bind to the transcriptional start region of Foxg1 and mediates the regulation of Foxg1 expression by H3K4me3 (Trimethylation of histone H3 lysine 4) modification. The deficits observed in menin deficient mice are rescued by the over-expression of Foxg1, leading to normalized spine growth and restoration of hippocampal synaptic plasticity. These findings suggest that menin may have a putative role in the maintenance of Foxg1 expression, highlighting menin signaling as a potential therapeutic target for Foxg1-related encephalopathy.

2.
Cancers (Basel) ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610989

RESUMO

Inhibition of menin in acute myeloid leukemia (AML) harboring histone-lysine-N-methyltransferase 2A rearrangement (KMT2Ar) or the mutated Nucleophosmin gene (NPM1c) is considered a novel and effective treatment approach in these patients. However, rapid acquisition of resistance mutations can impair treatment success. In patients with elevated retinoic acid receptor alpha (RARA) expression levels, promising effects are demonstrated by the next-generation RARalpha agonist tamibarotene, which restores differentiation or induces apoptosis. In this study, the combination of revumenib and tamibarotene was investigated in various KMT2Ar or NPM1c AML cell lines and patient-derived blasts, focusing on the potential synergistic induction of differentiation or apoptosis. Both effects were analyzed by flow cytometry and validated by Western blot analysis. Synergy calculations were performed using viability assays. Regulation of the relevant key mediators for the MLL complex were quantified by RT-qPCR. In MV4:11 cells characterized by the highest relative mRNA levels of RARA, highly synergistic induction of apoptosis is demonstrated upon combination treatment. Induction of apoptosis by combined treatment of MV4:11 cells is accompanied by pronounced induction of the pro-apoptotic protein BAX and a synergistic reduction in CDK6 mRNA levels. In MOLM13 and OCI-AML3 cells, an increase in differentiation markers like PU.1 or a decreased ratio of phosphorylated to total CEBPA is demonstrated. In parts, corresponding effects were observed in patient-derived AML cells carrying either KMT2Ar or NPM1c. The impact of revumenib on KMT2Ar or NPM1c AML cells was significantly enhanced when combined with tamibarotene, demonstrating synergistic differentiation or apoptosis initiation. These findings propose promising strategies for relapsed/refractory AML patients with defined molecular characteristics.

3.
Cell Rep Med ; : 101510, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614093

RESUMO

Key gene mutations are essential for colorectal cancer (CRC) development; however, how the mutated tumor cells impact the surrounding normal cells to promote tumor progression has not been well defined. Here, we report that PIK3CA mutant tumor cells transmit oncogenic signals and result in malignant transformation of intestinal epithelial cells (IECs) via paracrine exosomal arachidonic acid (AA)-induced H3K4 trimethylation. Mechanistically, PIK3CA mutations sustain SGK3-FBW7-mediated stability of the cPLA2 protein, leading to the synthetic increase in AA, which is transported through exosome and accumulated in IECs. Transferred AA directly binds Menin and strengthens the interactions of Menin and MLL1/2 methyltransferase. Finally, the combination of VTP50469, an inhibitor of the Menin-MLL interaction, and alpelisib synergistically represses PDX tumors harboring PIK3CA mutations. Together, these findings unveil the metabolic link between PIK3CA mutant tumor cells and the IECs, highlighting AA as the potential target for the treatment of patients with CRC harboring PIK3CA mutations.

4.
Hematol Rep ; 16(2): 244-254, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38651453

RESUMO

Menin inhibitors are new and promising agents currently in clinical development that target the HOX/MEIS1 transcriptional program which is critical for leukemogenesis in histone-lysine N-methyltransferase 2A-rearranged (KMT2Ar) and in NPM1-mutated (NPM1mut) acute leukemias. The mechanism of action of this new class of agents is based on the disruption of the menin-KMT2A complex (consisting of chromatin remodeling proteins), leading to the differentiation and apoptosis of AML cells expressing KMT2A or with mutated NPM1. To date, this new class of drugs has been tested in phase I and II clinical trials, both alone and in combination with synergistic drugs showing promising results in terms of response rates and safety in heavily pre-treated acute leukemia patients. In this brief review, we summarize the key findings on menin inhibitors, focusing on the mechanism of action and preliminary clinical data on the treatment of acute myeloid leukemia with this promising new class of agents, particularly revumenib and ziftomenib.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167136, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531483

RESUMO

Farnesoid X receptor (FXR) improves the function of islets, especially in the setting of Roux-en-Y gastric bypass (RYGB). Here we investigated how FXR activation regulates ß-cell proliferation and explored the potential link between FXR signaling and the menin pathway in controlling E2F3 expression, a key transcription factor for controlling adult ß-cell proliferation. Stimulation with the FXR agonist GW4064 or chenodeoxycholic acid (CDCA) increased E2F3 expression and ß-cell proliferation. Consistently, E2F3 knockdown abolished GW4064-induced proliferation. Treatment with GW4064 increased E2F3 expression in ß-cells via enhancing Steroid receptor coactivator-1 (SRC1) recruitment, increasing the pro-transcriptional acetylation of histone H3 at the E2f3 promoter. GW4064 treatment also decreased the association between FXR and menin, leading to the induction of FXR-mediated SRC1 recruitment. Mimicking the impact of FXR agonists, RYGB also increased E2F3 expression and ß-cell proliferation in GK rats and SD rats. These findings unravel the crucial role of the FXR/menin signaling in epigenetically controlling E2F3 expression and ß-cell proliferation, a mechanism possibly underlying RYGB-induced ß-cell proliferation.

7.
J Physiol Biochem ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427168

RESUMO

Corticosterone (CORT) damages hippocampal neurons as well as induces neuroinflammation. The tricarboxylic acid cycle metabolite itaconate has an anti-inflammatory role. Necroptosis is a form of programmed cell death, also known as inflammatory cell death. Menin is a multifunctional scaffold protein, which deficiency aggravates neuroinflammation. In this study, we explored whether itaconate inhibits CORT-induced neuroinflammation as well as necroptosis and further investigated the mediatory role of Menin in this protective effect of itaconate by using an exposure of CORT to HT22 cells (a hippocampal neuronal cell line). The viability of HT22 cells was examined by the cell counting kit 8 (CCK-8). The morphology of HT22 cells was observed by transmission electron microscope (TEM). The expressions of necroptosis-related proteins (p-RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL) were evaluated by western blotting. The contents of inflammatory factors were detected by an enzyme-linked immunosorbent assay (ELISA) kit. Our results showed that CORT increases the contents of pro-inflammatory factors (IL-1ß, TNF-α) as well as decreases the contents of anti-inflammatory factors (IL-4, IL-10) in HT22 cells. We also found that CORT increases the expressions of necroptosis-related proteins (p-RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL) and decreases the cell viability in HT22 cells, indicating that CORT induces necroptosis in HT22 cells. Itaconate improves CORT-induced neuroinflammation and necroptosis. Furthermore, itaconate upregulates the expression of Menin in CORT-exposed HT22 cells. Importantly, silencing Menin abolishes the antagonistic effect of itaconate on CORT-induced necroptosis and neuroinflammation. In brief, these results indicated that itaconate protects HT22 cells against CORT-induced neuroinflammation and necroptosis via upregulating Menin.

8.
Eur J Med Chem ; 268: 116226, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367493

RESUMO

To interfere the Menin-MLL interaction using small molecular inhibitors has been shown as new treatment of several special hematological malignancies. Herein, a series of Menin-MLL interaction inhibitors with pyrrolo[2,3-d]pyrimidine scaffold were designed, synthesized and evaluated. Among them, compound A6 exhibited potent binding affinity with an IC50 value of 0.38 µM, and strong anti-proliferative activity against MV4-11 cells with an IC50 value of 1.07 µM. Further study showed A6 reduced the transcriptional levels of HOXA9 and MEIS1 genes. Moreover, A6 induced cellular apoptosis, arrested the cell cycle in G0/G1 phase, and reversed the differentiation arrest in a concentration-dependent manner. This study suggested compound A6 was as a novel potent Menin-MLL interaction inhibitor, and it proved that introduction of 4-amino pyrrolo[2,3-d]pyrimidine to occupy the P10 hydrophobic pocket was new idea for design of novel Menin-MLL interaction inhibitors.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Humanos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia/tratamento farmacológico , Pirimidinas/farmacologia
9.
Oncol Ther ; 12(1): 57-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38300432

RESUMO

Recent advances have included insights into the clinical value of genomic abnormalities in acute myeloid leukemia (AML) and consequently the development of numerous targeted therapeutic agents that have improved clinical outcome. In this setting, various clinical trials have recently explored novel therapeutic agents either used alone or in combination with intensive chemotherapy or low-intensity treatments. Among them, menin inhibitors could represent a novel group of targeted therapies in AML driven by rearrangement of the lysine methyltransferase 2A (KMT2A) gene, previously known as mixed-lineage leukemia (MLL), or by mutation of the nucleophosmin 1 (NPM1) gene. Recent phase 1/2 clinical trials confirmed the efficacy of SNDX-5613 (revumenib) and KO-539 (ziftomenib) and their acceptable tolerability. Several small molecule menin inhibitors are currently being evaluated as a combination therapy with standard of care treatments. The current paper reviews the recent progress in exploring the inhibitors of menin-KMT2A interactions and their application prospects in the treatment of acute leukemias.

10.
Mol Neurobiol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386135

RESUMO

DNA damage is associated with hyperhomocysteinemia (HHcy) and neural tube defects (NTDs). Additionally, HHcy is a risk factor for NTDs. Therefore, this study examined whether DNA damage is involved in HHcy-induced NTDs and investigated the underlying pathological mechanisms involved. Embryonic day 9 (E9) mouse neuroectoderm cells (NE4C) and homocysteine-thiolactone (HTL, active metabolite of Hcy)-induced NTD chicken embryos were studied by Western blotting, immunofluorescence. RNA interference or gene overexpression techniques were employed to investigate the impact of Menin expression changes on the DNA damage. Chromatin immunoprecipitation-quantitative polymerase chain reaction was used to investigate the epigenetic regulation of histone modifications. An increase in γH2AX (a DNA damage indicator) was detected in HTL-induced NTD chicken embryos and HTL-treated NE4C, accompanied by dysregulation of phospho-Atr-Chk1-nucleotide excision repair (NER) pathway. Further investigation, based on previous research, revealed that disruption of NER was subject to the epigenetic regulation of low-expressed Menin-H3K4me3. Overexpression of Menin or supplementation with folic acid in HTL-treated NE4C reversed the adverse effects caused by high HTL. Additionally, by overexpressing the Mars gene, we tentatively propose a mechanism whereby HTL regulates Menin expression through H3K79hcy, which subsequently influences H3K4me3 modifications, reflecting an interaction between histone modifications. Finally, in 10 human fetal NTDs with HHcy, we detected a decrease in the expression of Menin-H3K4me3 and disorder in the NER pathway, which to some extent validated our proposed mechanism. The present study demonstrated that the decreased expression of Menin in high HTL downregulated H3K4me3 modifications, further weakening the Atr-Chk1-NER pathway, resulting in the occurrence of NTDs.

11.
J Dent Sci ; 19(1): 448-454, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303818

RESUMO

Background/purpose: Oral squamous cell carcinoma (OSCC) is a common cancer worldwide, and its metastasis is difficult to predict and prevent. Inhibin beta B (INHBB) protein has been linked to cancer prognosis and epithelial-mesenchymal transition (EMT). However, previous study about INHBB expression focused on patients in a single region while the risk factors vary among regions. This study aimed to provide a broader perspective on INHBB expression in OSCC. Materials and methods: Tissue micro-arrays comprising 118 specimens were subjected to immunohistochemistry, and all slides were quantified using StrataQuest software. Results: The ratio of INHBB-positive cells to total cells was significantly higher in OSCC samples than in normal samples, and the intensity of INHBB expression was significantly greater in the late-stage OSCC. After classifying specimens into high and low INHBB expression groups, a significant association with clinical staging was found. Though a previous study suggested that menin regulates INHBB, menin expression was not detected in specimens. Conclusion: The ratio of INHBB-positive cells in OSCC may be druggable for targeting tumor cells or assisting in diagnosis, and the intensity of INHBB expression may provide prognostic information for predicting potential metastasis. Moreover, the regulatory mechanism of INHBB in OSCC remains unclear and requires further investigation.

12.
Virchows Arch ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244045

RESUMO

Primary hyperparathyroidism with parathyroid tumors is a typical manifestation of Multiple Endocrine Neoplasia Type 1 (MEN1) and is historically termed "primary hyperplasia". Whether these tumors represent a multi-glandular clonal disease or hyperplasia has not been robustly proven so far. Loss of Menin protein expression is associated with inactivation of both alleles and a good surrogate for a MEN1 gene mutation. The cyclin-dependent kinase inhibitor 1B (CDKN1B) gene is mutated in MEN4 and encodes for protein p27 whose expression is poorly studied in the syndromic MEN1 setting.Here, we analyzed histomorphology and protein expression of Menin and p27 in parathyroid adenomas of 25 patients of two independent, well-characterized MEN1 cohorts. The pattern of loss of heterozygosity (LOH) was assessed by fluorescence in situ hybridization (FISH) in one MEN1-associated parathyroid adenoma. Further, next-generation sequencing (NGS) was performed on eleven nodules of four MEN1 patients.Morphologically, the majority of MEN1 adenomas consisted of multiple distinct nodules, in which Menin expression was mostly lost and p27 protein expression reduced. FISH analysis revealed that most nodules exhibited MEN1 loss, with or without the loss of centromere 11. NGS demonstrated both subclonal evolution and the existence of clonally unrelated tumors.Syndromic MEN1 parathyroid adenomas therefore consist of multiple clones with subclones, which supports the current concept of the novel WHO classification of parathyroid tumors (2022). p27 expression was lost in a large fraction of MEN1 parathyroids and must therefore be used with caution in suggesting MEN4.

13.
Adv Sci (Weinh) ; 11(5): e2305659, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044302

RESUMO

Dysfunction of parvalbumin (PV) neurons is closely involved in depression, however, the detailed mechanism remains unclear. Based on the previous finding that multiple endocrine neoplasia type 1 (Protein: Menin; Gene: Men1) mutation (G503D) is associated with a higher risk of depression, a Menin-G503D mouse model is generated that exhibits heritable depressive-like phenotypes and increases PV expression in brain. This study generates and screens a serial of neuronal specific Men1 deletion mice, and found that PV interneuron Men1 deletion mice (PcKO) exhibit increased cortical PV levels and depressive-like behaviors. Restoration of Menin, knockdown PV expression or inhibition of PV neuronal activity in PV neurons all can ameliorate the depressive-like behaviors of PcKO mice. This study next found that ketamine stabilizes Menin by inhibiting protein kinase A (PKA) activity, which mediates the anti-depressant function of ketamine. These results demonstrate a critical role for Menin in depression, and prove that Menin is key to the antidepressant function of ketamine.


Assuntos
Antidepressivos , Ketamina , Neoplasia Endócrina Múltipla Tipo 1 , Animais , Camundongos , Ketamina/farmacologia , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Mutação , Parvalbuminas/genética , Parvalbuminas/metabolismo , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Antidepressivos/farmacologia
14.
Biomark Res ; 11(1): 105, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053201

RESUMO

KMT2A-rearranged acute myeloid leukemia (KMT2Ar-AML) is an aggressive subtype of AML with poor response and prognosis. KMT2Ar-AML has been demonstrated to be sensitive to BCL2 inhibitor venetoclax (VEN), but these patients are unable to benefit from current VEN-based regimen (VEN plus azacitidine or low dose-cytarabine), so a novel and KMT2A rearrangement-specific targeting partner is required, and MENIN inhibitor (MEN1i) is a promising one. Herein, we investigated the effect and mechanism of VEN plus MEN1i in KMT2Ar-AML. Our results showed that VEN and MEN1i exhibited a striking synergistic effect in KMT2Ar-AML cell lines (in vitro), primary KMT2Ar-AML cells (ex vivo), and MOLM13 xenotransplantation model (in vivo). Furthermore, we found that VEN plus MEN1i significantly enhanced apoptotic induction in KMT2Ar-AML cell lines. VEN or MEN1i monotherapy disrupted balance of BCL-2/BCL-XL or down-regulated HOXA9/MEIS1, respectively, but these mechanisms were not further strengthened by their combination. RNA-Sequencing identified that HDAC9 was specifically repressed by VEN plus MEN1i rather than monotherapy. We demonstrated that HDAC9 was indispensable for KMT2Ar-AML proliferation and its repression contributed to proliferation inhibition of VEN plus MEN1i. Moreover, we found that hypoxia induced HDAC9 expression in KMT2Ar-AML, and VEN plus MEN1i inhibited hypoxia pathway, especially HIF-1A, and its target HDAC9. As our results indicated, VEN plus MEN1i-mediated HDAC9 down-regulation was partially dependent on HIF-1A repression in KMT2Ar-AML. Hypoxia induction sensitized KMT2Ar-AML to VEN plus MI-503-mediated proliferation inhibition and apoptosis induction. Therefore, repressing HIF-1A-induced HDAC9 contributed to the synergistic effect of VEN and MEN1i in KMT2Ar-AML.

15.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003662

RESUMO

Menin/MEN1 is a scaffold protein that participates in proliferation, regulation of gene transcription, DNA damage repair, and signal transduction. In hematological malignancies harboring the KMT2A/MLL1 (MLLr) chromosomal rearrangements, the interaction of the oncogenic fusion protein MLLr with MEN1 has been shown to be essential. MEN1 binders inhibiting the MEN1 and KMT2A interaction have been shown to be effective against MLLr AML and B-ALL in experimental models and clinical studies. We hypothesized that in addition to the MEN1-KMT2A interaction, alternative mechanisms might be instrumental in the MEN1 dependency of leukemia. We first mined and analyzed data from publicly available gene expression databases, finding that the dependency of B-ALL cell lines on MEN1 did not correlate with the presence of MLLr. Using shRNA-mediated knockdown, we found that all tested B-ALL cell lines were sensitive to MEN1 depletion, independent of the underlying driver mutations. Most multiple myeloma cell lines that did not harbor MLLr were also sensitive to the genetic depletion of MEN1. We conclude that the oncogenic role of MEN1 is not limited to the interaction with KMT2A. Our results suggest that targeted degradation of MEN1 or the development of binders that induce global changes in the MEN1 protein structure may be more efficient than the inhibition of individual MEN1 protein interactions.


Assuntos
Mieloma Múltiplo , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Linhagem Celular Tumoral , Leucemia/metabolismo , Mieloma Múltiplo/genética , Fatores de Transcrição/genética
16.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873235

RESUMO

Telomeres protect chromosome ends and determine the replication potential of dividing cells. The canonical telomere sequence TTAGGG is synthesized by telomerase holoenzyme, which maintains telomere length in proliferative stem cells. Although the core components of telomerase are well-defined, mechanisms of telomerase regulation are still under investigation. We report a novel role for the Src family kinase Fyn, which disrupts telomere maintenance in stem cells by phosphorylating the scaffold protein Menin. Fyn phosphorylates Menin at tyrosine 603 (Y603), which increases Menin's SUMO1 modification, C-terminal stability, and importantly, its association with the telomerase RNA component (TR). We show that SUMO1-Menin decreases TR's association with telomerase subunit Dyskerin, suggesting that Fyn's phosphorylation of Menin induces telomerase subunit mislocalization and may compromise telomerase function at telomeres. Importantly, we find that Fyn inhibition reduces accelerated telomere shortening in human iPSCs harboring mutations for dyskeratosis congenita.

17.
Front Endocrinol (Lausanne) ; 14: 1221514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867522

RESUMO

Background: Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by the occurrence of multiple epithelial neuroendocrine tumors (NETs) and non-NETs in various organs. MEN1 encodes a 610-amino acid-long tumor suppressor protein, menin. The optimal treatment for multiple tumors, identification of the most critical tumors for patient prognosis, and menin immunohistochemistry findings remain controversial. Therefore, we aimed to elucidate these issues through a histological analysis of tumors and tumor-like lesions in a Japanese family, comprising a father and his two sons, who had MEN1 with Zollinger-Ellison syndrome (ZES). Patients and methods: All family members had a germline alteration in exon 10, c.1714-1715 del TC of MEN1, and exhibited multiple synchronous and metachronous tumors. The patients had pulmonary NETs, hyperparathyroidism, hypergastrinemia, pituitary adenomas, pancreaticoduodenal NETs, adrenocortical adenoma with myelolipoma, nodular goiter of the thyroid, lipomas, and angiofibroma. Most tumors were resected and histologically examined. We compared their clinical courses and tumor histology, and conducted menin immunohistochemistry (IHC). Results: Two patients died of pulmonary NET G2. One patient who underwent pancreaticoduodenectomy was cured of ZES; however, the two other patients who did not undergo pancreaticoduodenectomy suffered persistent ZES despite treatment with octreotide. Menin IHC revealed varying NET intensities, ranging from positive to negative stains. Conclusion: Pancreaticoduodenectomy is the most effective treatment for ZES. Long-term follow-up is essential for pulmonary NET G2 owing to the risk of distant metastasis and/or multiplicity. Moreover, the variability of menin IHC in MEN1-related tumors may indicate the pattern of tumor formation rather than the diagnostic utility of menin in MEN1.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Tumores Neuroendócrinos , Síndrome de Zollinger-Ellison , Humanos , População do Leste Asiático , Imuno-Histoquímica , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/cirurgia , Neoplasia Endócrina Múltipla Tipo 1/diagnóstico , Fatores de Transcrição , Síndrome de Zollinger-Ellison/diagnóstico , Síndrome de Zollinger-Ellison/genética , Síndrome de Zollinger-Ellison/patologia
18.
Cell Biosci ; 13(1): 175, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740216

RESUMO

BACKGROUND: Menin is a scaffold protein encoded by the Men1 gene, which interacts with various transcriptional proteins to activate or repress cellular processes and is a key mediator in multiple organs. Both liver-specific and hepatocyte-specific Menin deficiency promotes high-fat diet-induced liver steatosis in mice, as well as insulin resistance and type 2 diabetic phenotype. The potential link between Menin and hepatic metabolism homeostasis may provide new insights into the mechanism of fatty liver disease. RESULTS: Disturbance of hepatic Menin expression impacts metabolic pathways associated with non-alcoholic fatty liver disease (NAFLD), including the FoxO signaling pathway, which is similar to that observed in both oleic acid-induced fatty hepatocytes model and biopsied fatty liver tissues, but with elevated hepatic Menin expression and inhibited FABP1. Higher levels of Menin facilitate glucose uptake while restraining fatty acid uptake. Menin targets the expression of FABP3/4/5 and also CD36 or GK, PCK by binding to their promoter regions, while recruiting and deploying the cellular localization of PPARγ and SIRT1 in the nucleus and cytoplasm. Accordingly, Menin binds to PPARγ and/or FoxO1 in hepatocytes, and orchestrates hepatic glucose and fatty acid uptake by recruiting SIRT1. CONCLUSION: Menin plays an orchestration role as a transcriptional activator and/or repressor to target downstream gene expression levels involved in hepatic energy uptake by interacting with the cellular energy sensor SIRT1, PPARγ, and/or FoxO1 and deploying their translocations between the cytoplasm and nucleus, thereby maintaining metabolic homeostasis. These findings provide more evidence suggesting Menin could be targeted for the treatment of hepatic steatosis, NAFLD or metabolic dysfunction-associated fatty liver disease (MAFLD), and even other hepatic diseases.

19.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627154

RESUMO

BACKGROUND AND AIMS: Menin is a nuclear scaffold protein that regulates gene transcription in an oftentimes tissue-specific manner. Our previous work showed that menin is over-expressed in colorectal cancer (CRC); however, the full spectrum of menin function in colonic neoplasia remains unclear. Herein, we aimed to uncover novel menin-regulated pathways important for colorectal carcinogenesis. METHODS: RNA-Seq analysis identified that menin regulates LXR-target gene expressions in CRC cell lines. Isolated colonic epithelium from Men1f/f;Vil1-Cre and Men1f/f mice was used to validate the results in vivo. Cholesterol content was quantified via an enzymatic assay. RESULTS: RNA-Seq analysis in the HT-29 CRC cell line identified that menin inhibition upregulated LXR-target genes, specifically ABCG1 and ABCA1, with protein products that promote cellular cholesterol efflux. Similar results were noted across other CRC cell lines and with different methods of menin inhibition. Consistent with ABCG1 and ABCA1 upregulation, and similarly to LXR agonists, menin inhibition reduced the total cellular cholesterol in both HT-29 and HCT-15 cells. To confirm the effects of menin inhibition in vivo, we assessed Men1f/f;Vil1-Cre mice lacking menin expression in the colonic epithelium. Men1f/f;Vil1-Cre mice were found to have no distinct baseline phenotype compared to control Men1f/f mice. However, similarly to CRC cell lines, Men1f/f;Vil1-Cre mice showed an upregulation of Abcg1 and a reduction in total cellular cholesterol. Promoting cholesterol efflux, either via menin inhibition or LXR activation, was found to synergistically suppress CRC cell growth under cholesterol-depleted conditions and when administered concomitantly with small molecule EGFR inhibitors. CONCLUSIONS: Menin represses the transcription of LXR-target genes, including ABCA1 and ABCG1 in the colonic epithelium and CRC. Menin inhibition conversely upregulates LXR-target genes and reduces total cellular cholesterol, demonstrating that menin inhibition may be an important mechanism for targeting cholesterol-dependent pathways in colorectal carcinogenesis.

20.
Endocr Oncol ; 3(1): e230003, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37434653

RESUMO

Pancreatic neuroendocrine tumours (PNETs) are the second most common pancreatic tumour. However, relatively little is known about their tumourigenic drivers, other than mutations involving the multiple endocrine neoplasia 1 (MEN1), ATRX chromatin remodeler, and death domain-associated protein genes, which are found in ~40% of sporadic PNETs. PNETs have a low mutational burden, thereby suggesting that other factors likely contribute to their development, including epigenetic regulators. One such epigenetic process, DNA methylation, silences gene transcription via 5'methylcytosine (5mC), and this is usually facilitated by DNA methyltransferase enzymes at CpG-rich areas around gene promoters. However, 5'hydroxymethylcytosine, which is the first epigenetic mark during cytosine demethylation, and opposes the function of 5mC, is associated with gene transcription, although the significance of this remains unknown, as it is indistinguishable from 5mC when conventional bisulfite conversion techniques are solely used. Advances in array-based technologies have facilitated the investigation of PNET methylomes and enabled PNETs to be clustered by methylome signatures, which has assisted in prognosis and discovery of new aberrantly regulated genes contributing to tumourigenesis. This review will discuss the biology of DNA methylation, its role in PNET development, and impact on prognostication and discovery of epigenome-targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...